Time::Local(3p) Perl Programmers Reference Guide Time::Local(3p) #
Time::Local(3p) Perl Programmers Reference Guide Time::Local(3p)
NNAAMMEE #
Time::Local - Efficiently compute time from local and GMT time
VVEERRSSIIOONN #
version 1.30
SSYYNNOOPPSSIISS #
use Time::Local qw( timelocal_posix timegm_posix );
my $time = timelocal_posix( $sec, $min, $hour, $mday, $mon, $year );
my $time = timegm_posix( $sec, $min, $hour, $mday, $mon, $year );
DDEESSCCRRIIPPTTIIOONN #
This module provides functions that are the inverse of built-in perl
functions "localtime()" and "gmtime()". They accept a date as a six-
element array, and return the corresponding time(2) value in seconds
since the system epoch (Midnight, January 1, 1970 GMT on Unix, for
example). This value can be positive or negative, though POSIX only
requires support for positive values, so dates before the system's epoch
may not work on all operating systems.
It is worth drawing particular attention to the expected ranges for the
values provided. The value for the day of the month is the actual day
(i.e. 1..31), while the month is the number of months since January
(0..11). This is consistent with the values returned from "localtime()"
and "gmtime()".
FFUUNNCCTTIIOONNSS #
“"ttiimmeellooccaall__ppoossiixx(())“” aanndd “"ttiimmeeggmm__ppoossiixx(())“” These functions are the exact inverse of Perl’s built-in “localtime” and “gmtime” functions. That means that calling “timelocal_posix( localtime($value) )” will always give you the same $value you started with. The same applies to “timegm_posix( gmtime($value) )”.
The one exception is when the value returned from "localtime()"
represents an ambiguous local time because of a DST change. See the
documentation below for more details.
These functions expect the year value to be the number of years since
1900, which is what the "localtime()" and "gmtime()" built-ins returns.
They perform range checking by default on the input $sec, $min, $hour,
$mday, and $mon values and will croak (using "Carp::croak()") if given a
value outside the allowed ranges.
While it would be nice to make this the default behavior, that would
almost certainly break a lot of code, so you must explicitly import these
functions and use them instead of the default "timelocal()" and
"timegm()".
You are ssttrroonnggllyy encouraged to use these functions in any new code which
uses this module. It will almost certainly make your code's behavior less
surprising.
“"ttiimmeellooccaall__mmooddeerrnn(())“” aanndd “"ttiimmeeggmm__mmooddeerrnn(())“” When “Time::Local” was first written, it was a common practice to represent years as a two-digit value like 99 for 1999 or 1 for 2001. This caused all sorts of problems (google “Y2K problem” if you’re very young) and developers eventually realized that this was a terrible idea.
The default exports of "timelocal()" and "timegm()" do a complicated
calculation when given a year value less than 1000. This leads to
surprising results in many cases. See "Year Value Interpretation" for
details.
The "time*_modern()" functions do not do this year munging and simply
take the year value as provided.
They perform range checking by default on the input $sec, $min, $hour,
$mday, and $mon values and will croak (using "Carp::croak()") if given a
value outside the allowed ranges.
“"ttiimmeellooccaall(())“” aanndd “"ttiimmeeggmm(())“” This module exports two functions by default, “timelocal()” and “timegm()”.
They perform range checking by default on the input $sec, $min, $hour,
$mday, and $mon values and will croak (using "Carp::croak()") if given a
value outside the allowed ranges.
WWaarrnniinngg:: TThhee yyeeaarr vvaalluuee iinntteerrpprreettaattiioonn tthhaatt tthheessee ffuunnccttiioonnss aanndd tthheeiirr
nnoocchheecckk vvaarriiaannttss uussee wwiillll aallmmoosstt cceerrttaaiinnllyy lleeaadd ttoo bbuuggss iinn yyoouurr ccooddee,, iiff
nnoott nnooww,, tthheenn iinn tthhee ffuuttuurree.. YYoouu aarree ssttrroonnggllyy ddiissccoouurraaggeedd ffrroomm uussiinngg
tthheessee iinn nneeww ccooddee,, aanndd yyoouu sshhoouulldd ccoonnvveerrtt oolldd ccooddee ttoo uussiinngg eeiitthheerr tthhee
**__ppoossiixx oorr **__mmooddeerrnn ffuunnccttiioonnss iiff ppoossssiibbllee..
“"ttiimmeellooccaall__nnoocchheecckk(())“” aanndd “"ttiimmeeggmm__nnoocchheecckk(())“” If you are working with data you know to be valid, you can use the “nocheck” variants, “timelocal_nocheck()” and “timegm_nocheck()”. These variants must be explicitly imported.
If you supply data which is not valid (month 27, second 1,000) the
results will be unpredictable (so don't do that).
Note that my benchmarks show that this is just a 3% speed increase over
the checked versions, so unless calling "Time::Local" is the hottest spot
in your application, using these nocheck variants is unlikely to have
much impact on your application.
YYeeaarr VVaalluuee IInntteerrpprreettaattiioonn TThhiiss ddooeess nnoott aappppllyy ttoo tthhee __ppoossiixx oorr __mmooddeerrnn ffuunnccttiioonnss.. UUssee tthhoossee eexxppoorrttss iiff yyoouu wwaanntt ttoo eennssuurree ccoonnssiisstteenntt bbeehhaavviioorr aass yyoouurr ccooddee aaggeess..
Strictly speaking, the year should be specified in a form consistent with
"localtime()", i.e. the offset from 1900. In order to make the
interpretation of the year easier for humans, however, who are more
accustomed to seeing years as two-digit or four-digit values, the
following conventions are followed:
• Years greater than 999 are interpreted as being the actual year,
rather than the offset from 1900. Thus, 1964 would indicate the year
Martin Luther King won the Nobel prize, not the year 3864.
• Years in the range 100..999 are interpreted as offset from 1900, so
that 112 indicates 2012. This rule also applies to years less than
zero (but see note below regarding date range).
• Years in the range 0..99 are interpreted as shorthand for years in
the rolling "current century," defined as 50 years on either side of
the current year. Thus, today, in 1999, 0 would refer to 2000, and 45
to 2045, but 55 would refer to 1955. Twenty years from now, 55 would
instead refer to 2055. This is messy, but matches the way people
currently think about two digit dates. Whenever possible, use an
absolute four digit year instead.
The scheme above allows interpretation of a wide range of dates,
particularly if 4-digit years are used. But it also means that the
behavior of your code changes as time passes, because the rolling
"current century" changes each year.
LLiimmiittss ooff ttiimmee__tt On perl versions older than 5.12.0, the range of dates that can be actually be handled depends on the size of “time_t” (usually a signed integer) on the given platform. Currently, this is 32 bits for most systems, yielding an approximate range from Dec 1901 to Jan 2038.
Both "timelocal()" and "timegm()" croak if given dates outside the
supported range.
As of version 5.12.0, perl has stopped using the time implementation of
the operating system it's running on. Instead, it has its own
implementation of those routines with a safe range of at least +/- 2**52
(about 142 million years)
AAmmbbiigguuoouuss LLooccaall TTiimmeess ((DDSSTT)) Because of DST changes, there are many time zones where the same local time occurs for two different GMT times on the same day. For example, in the “Europe/Paris” time zone, the local time of 2001-10-28 02:30:00 can represent either 2001-10-28 00:30:00 GMT, oorr 2001-10-28 01:30:00 GMT.
When given an ambiguous local time, the ttiimmeellooccaall(()) function will always
return the epoch for the _e_a_r_l_i_e_r of the two possible GMT times.
NNoonn--EExxiisstteenntt LLooccaall TTiimmeess ((DDSSTT)) When a DST change causes a locale clock to skip one hour forward, there will be an hour’s worth of local times that don’t exist. Again, for the “Europe/Paris” time zone, the local clock jumped from 2001-03-25 01:59:59 to 2001-03-25 03:00:00.
If the "timelocal()" function is given a non-existent local time, it will
simply return an epoch value for the time one hour later.
NNeeggaattiivvee EEppoocchh VVaalluueess On perl version 5.12.0 and newer, negative epoch values are fully supported.
On older versions of perl, negative epoch ("time_t") values, which are
not officially supported by the POSIX standards, are known not to work on
some systems. These include MacOS (pre-OSX) and Win32.
On systems which do support negative epoch values, this module should be
able to cope with dates before the start of the epoch, down the minimum
value of time_t for the system.
IIMMPPLLEEMMEENNTTAATTIIOONN #
These routines are quite efficient and yet are always guaranteed to agree
with "localtime()" and "gmtime()". We manage this by caching the start
times of any months we've seen before. If we know the start time of the
month, we can always calculate any time within the month. The start
times are calculated using a mathematical formula. Unlike other
algorithms that do multiple calls to "gmtime()".
The "timelocal()" function is implemented using the same cache. We just
assume that we're translating a GMT time, and then fudge it when we're
done for the timezone and daylight savings arguments. Note that the
timezone is evaluated for each date because countries occasionally change
their official timezones. Assuming that "localtime()" corrects for these
changes, this routine will also be correct.
AAUUTTHHOORRSS EEMMEERRIITTUUSS #
This module is based on a Perl 4 library, timelocal.pl, that was included
with Perl 4.036, and was most likely written by Tom Christiansen.
The current version was written by Graham Barr.
BBUUGGSS #
The whole scheme for interpreting two-digit years can be considered a
bug.
Bugs may be submitted at
<https://github.com/houseabsolute/Time-Local/issues>.
There is a mailing list available for users of this distribution,
<mailto:datetime@perl.org>.
I am also usually active on IRC as 'autarch' on "irc://irc.perl.org".
SSOOUURRCCEE #
The source code repository for Time-Local can be found at
<https://github.com/houseabsolute/Time-Local>.
AAUUTTHHOORR #
Dave Rolsky <autarch@urth.org>
CCOONNTTRRIIBBUUTTOORRSS #
• Florian Ragwitz <rafl@debian.org>
• J. Nick Koston <nick@cpanel.net>
• Unknown <unknown@example.com>
CCOOPPYYRRIIGGHHTT AANNDD LLIICCEENNSSEE #
This software is copyright (c) 1997 - 2020 by Graham Barr & Dave Rolsky.
This is free software; you can redistribute it and/or modify it under the
same terms as the Perl 5 programming language system itself.
The full text of the license can be found in the _L_I_C_E_N_S_E file included
with this distribution.
perl v5.36.3 2023-02-15 Time::Local(3p)